Skip to content

API

HourlyModel(settings=None) 🔗

A class to fit a model to the input meter data.

Attributes:

Name Type Description
settings dict

A dictionary of settings.

baseline_metrics dict

A dictionary of metrics based on input baseline data and model fit.

Parameters:

Name Type Description Default
settings dict | BaseHourlySettings | None

HourlySettings to use (generally left default). Will default to solar model if GHI is given to the fit step.

None

settings = _settings.BaseHourlySettings() instance-attribute 🔗

is_fitted = False instance-attribute 🔗

baseline_metrics = None instance-attribute 🔗

baseline_hour_metrics = None instance-attribute 🔗

warnings: list[EEMeterWarning] = [] instance-attribute 🔗

disqualification: list[EEMeterWarning] = [] instance-attribute 🔗

baseline_timezone = None instance-attribute 🔗

error = dict() instance-attribute 🔗

version = __version__ instance-attribute 🔗

fit(baseline_data, ignore_disqualification=False) 🔗

Fit the model using baseline data.

Parameters:

Name Type Description Default
baseline_data HourlyBaselineData

HourlyBaselineData object.

required
ignore_disqualification bool

Whether to ignore disqualification errors / warnings.

False

Returns:

Type Description
HourlyModel

The fitted model.

Raises:

Type Description
TypeError

If baseline_data is not an HourlyBaselineData object.

DataSufficiencyError

If the model can’t be fit on disqualified baseline data.

predict(reporting_data, ignore_disqualification=False) 🔗

Predicts the energy consumption using the fitted model.

Parameters:

Name Type Description Default
reporting_data Union[HourlyBaselineData, HourlyReportingData]

The data used for prediction.

required
ignore_disqualification bool

Whether to ignore model disqualification. Defaults to False.

False

Returns:

Type Description
DataFrame

Dataframe with input data along with predicted energy consumption.

Raises:

Type Description
RuntimeError

If the model is not fitted.

DisqualifiedModelError

If the model is disqualified and ignore_disqualification is False.

TypeError

If the reporting data is not of type HourlyBaselineData or HourlyReportingData.

to_dict() 🔗

Returns a dictionary of model parameters.

Returns:

Type Description
dict

Model parameters.

to_json() 🔗

Returns a JSON string of model parameters.

Returns:

Type Description
str

Model parameters.

from_dict(data) classmethod 🔗

Create a instance of the class from a dictionary (such as one produced from the to_dict method).

Parameters:

Name Type Description Default
data dict

The dictionary containing the model data.

required

Returns:

Type Description
HourlyModel

An instance of the class.

from_json(str_data) classmethod 🔗

Create an instance of the class from a JSON string.

Parameters:

Name Type Description Default
str_data

The JSON string representing the object.

required

Returns:

Type Description
HourlyModel

An instance of the class.

plot(df_eval) 🔗

Plot a model fit with baseline or reporting data.

Parameters:

Name Type Description Default
df_eval HourlyBaselineData | HourlyReportingData

The baseline or reporting data object to plot.

required

HourlyBaselineData(df, is_electricity_data, pv_start=None, settings=None, **kwargs) 🔗

Data class to represent Hourly Baseline Data.

Only baseline data should go into the dataframe input, no blackout data should be input. Checks sufficiency for the data provided as input depending on OpenEEMeter specifications and populates disqualifications and warnings based on it.

Parameters:

Name Type Description Default
df DataFrame

A dataframe having a datetime index or a datetime column with the timezone also being set. It also requires 2 more columns - ‘observed’ for meter data, and ‘temperature’ for temperature data. Optionally, column ‘ghi’ can be included in order to fit on solar data. The temperature column should have values in Fahrenheit. Please convert your temperatures accordingly.

required
is_electricity_data bool

Flag to ascertain if this is electricity data or not. Electricity data values of 0 are set to NaN.

required

Attributes:

Name Type Description
df DataFrame

Immutable dataframe that contains the meter and temperature values for the baseline data period.

disqualification list[EEMeterWarning]

A list of serious issues with the data that can degrade the quality of the model. If you want to go ahead with building the model while ignoring them, set the ignore_disqualification = True flag in the model. By default disqualifications are not ignored.

warnings list[EEMeterWarning]

A list of issues with the data, but none that will severely reduce the quality of the model built.

pv_start date

Solar install date. If left unset, assumed to be at beginning of data.

is_electricity_data = is_electricity_data instance-attribute 🔗

tz = None instance-attribute 🔗

warnings = [] instance-attribute 🔗

disqualification = [] instance-attribute 🔗

pv_start = None instance-attribute 🔗

settings = HourlyDataSettings() instance-attribute 🔗

df property 🔗

Get the corrected input data stored in the class. The actual dataframe is immutable, this returns a copy.

log_warnings() 🔗

Logs the warnings and disqualifications associated with the data.

HourlyReportingData(df, is_electricity_data, pv_start=None, settings=None, **kwargs) 🔗

Data class to represent Hourly Reporting Data.

Only reporting data should go into the dataframe input, no blackout data should be input. Checks sufficiency for the data provided as input depending on OpenEEMeter specifications and populates disqualifications and warnings based on it.

Meter data input is optional for the reporting class.

Parameters:

Name Type Description Default
df DataFrame

A dataframe having a datetime index or a datetime column with the timezone also being set. It also requires 2 more columns - ‘observed’ for meter data, and ‘temperature’ for temperature data. If GHI was provided during the baseline period, it should also be supplied for the reporting period with column name ‘ghi’. The temperature column should have values in Fahrenheit. Please convert your temperatures accordingly.

required
is_electricity_data bool

Flag to ascertain if this is electricity data or not. Electricity data values of 0 are set to NaN.

required

Attributes:

Name Type Description
df DataFrame

Immutable dataframe that contains the meter and temperature values for the baseline data period.

disqualification list[EEMeterWarning]

A list of serious issues with the data that can degrade the quality of the model. If you want to go ahead with building the model while ignoring them, set the ignore_disqualification = True flag in the model. By default disqualifications are not ignored.

warnings list[EEMeterWarning]

A list of issues with the data, but none that will severely reduce the quality of the model built.

pv_start date

Solar install date. If left unset, assumed to be at beginning of data.

is_electricity_data = is_electricity_data instance-attribute 🔗

tz = None instance-attribute 🔗

warnings = [] instance-attribute 🔗

disqualification = [] instance-attribute 🔗

pv_start = None instance-attribute 🔗

settings = HourlyDataSettings() instance-attribute 🔗

df property 🔗

Get the corrected input data stored in the class. The actual dataframe is immutable, this returns a copy.

log_warnings() 🔗

Logs the warnings and disqualifications associated with the data.