Skip to content

API

BillingModel(settings=None, verbose=False) 🔗

A class to fit a model to the input meter data.

BillingModel is a wrapper for the DailyModel class using billing presets.

Attributes:

Name Type Description
settings dict

A dictionary of settings.

seasonal_options list

A list of seasonal options (su: Summer, sh: Shoulder, wi: Winter). Elements in the list are seasons separated by ‘_’ that represent a model split. For example, a list of [‘su_sh’, ‘wi’] represents two splits: summer/shoulder and winter.

day_options list

A list of day options.

combo_dictionary dict

A dictionary of combinations.

df_meter DataFrame

A dataframe of meter data.

error dict

A dictionary of error metrics.

combinations list

A list of combinations.

components list

A list of components.

fit_components list

A list of fit components.

wRMSE_base float

The mean bias error for no splits.

best_combination list

The best combination of splits.

model Pipeline

The final fitted model.

id str

The index of the meter data.

to_json() 🔗

Returns a JSON string of model parameters.

Returns:

Type Description
str

Model parameters.

from_dict(data) classmethod 🔗

Create a instance of the class from a dictionary (such as one produced from the to_dict method).

Parameters:

Name Type Description Default
data dict

The dictionary containing the model data.

required

Returns:

Type Description
DailyModel

An instance of the class.

from_json(str_data) classmethod 🔗

Create an instance of the class from a JSON string.

Parameters:

Name Type Description Default
str_data str

The JSON string representing the object.

required

Returns:

Type Description
DailyModel

An instance of the class.

fit(baseline_data, ignore_disqualification=False) 🔗

predict(reporting_data, aggregation=None, ignore_disqualification=False) 🔗

Predicts the energy consumption using the fitted model.

Parameters:

Name Type Description Default
reporting_data BillingBaselineData | BillingReportingData

The data used for prediction.

required
aggregation str | None

The aggregation level for the prediction. One of [None, ‘none’, ‘monthly’, ‘bimonthly’].

None
ignore_disqualification bool

Whether to ignore model disqualification. Defaults to False.

False

Returns:

Type Description
DataFrame

Dataframe with input data along with predicted energy consumption.

Raises:

Type Description
RuntimeError

If the model is not fitted.

DisqualifiedModelError

If the model is disqualified and ignore_disqualification is False.

TypeError

If the reporting data is not of type BillingBaselineData or BillingReportingData.

ValueError

If the aggregation is not one of [None, ‘none’, ‘monthly’, ‘bimonthly’].

plot(data, aggregation=None) 🔗

Plot a model fit with baseline or reporting data. Requires matplotlib to use.

Parameters:

Name Type Description Default
df_eval

The baseline or reporting data object to plot.

required
aggregation str | None

The aggregation level for the prediction. One of [None, ‘none’, ‘monthly’, ‘bimonthly’].

None

to_dict() 🔗

Returns a dictionary of model parameters.

Returns:

Type Description
dict

Model parameters.

BillingBaselineData(df, is_electricity_data, settings=None) 🔗

Data class to represent Billing Baseline Data.

Only baseline data should go into the dataframe input, no blackout data should be input. Checks sufficiency for the data provided as input depending on OpenEEMeter specifications and populates disqualifications and warnings based on it.

Billing data should have an extra month’s data appended at the to denote end of period. (Do not append NaN, any other value would work.)

Parameters:

Name Type Description Default
df DataFrame

A dataframe having a datetime index or a datetime column with the timezone also being set. It also requires 2 more columns - ‘observed’ for meter data, and ‘temperature’ for temperature data. The temperature column should have values in Fahrenheit. Please convert your temperatures accordingly.

required
is_electricity_data bool

Flag to ascertain if this is electricity data or not. Electricity data values of 0 are set to NaN.

required

Attributes:

Name Type Description
df DataFrame

Immutable dataframe that contains the meter and temperature values for the baseline data period.

disqualification list[EEMeterWarning]

A list of serious issues with the data that can degrade the quality of the model. If you want to go ahead with building the model while ignoring them, set the ignore_disqualification = True flag in the model. By default disqualifications are not ignored.

warnings list[EEMeterWarning]

A list of ssues with the data, but none that will severely reduce the quality of the model built.

is_electricity_data = is_electricity_data instance-attribute 🔗

tz = None instance-attribute 🔗

warnings = [] instance-attribute 🔗

disqualification = [] instance-attribute 🔗

settings = self._settings_class() instance-attribute 🔗

df: pd.DataFrame | None property 🔗

Get the corrected input data stored in the class. The actual dataframe is immutable, this returns a copy.

billing_df: pd.DataFrame | None property 🔗

Get the corrected input data stored in the class. The actual dataframe is immutable, this returns a copy.

from_series(meter_data, temperature_data, is_electricity_data, settings=None) classmethod 🔗

Create an instance of the Data class from meter data and temperature data.

Public method that can can handle two separate series (meter and temperature) and join them to create a single dataframe. The temperature column should have values in Fahrenheit.

Parameters:

Name Type Description Default
meter_data Series | DataFrame

The meter data.

required
temperature_data Series | DataFrame

The temperature data.

required
is_electricity_data bool

A flag indicating whether the data represents electricity data. This is required as electricity data with 0 values are converted to NaNs.

required

Returns:

Type Description

An instance of the Data class with the dataframe populated with the corrected data, along with warnings and disqualifications based on the input.

BillingReportingData(df, is_electricity_data, settings=None) 🔗

Data class to represent Billing Reporting Data.

Only reporting data should go into the dataframe input, no blackout data should be input. Checks sufficiency for the data provided as input depending on OpenEEMeter specifications and populates disqualifications and warnings based on it.

Meter data input is optional for the reporting class.

Parameters:

Name Type Description Default
df DataFrame

A dataframe having a datetime index or a datetime column with the timezone also being set. It also requires 2 more columns - ‘observed’ for meter data, and ‘temperature’ for temperature data. The temperature column should have values in Fahrenheit. Please convert your temperatures accordingly.

required
is_electricity_data bool

Flag to ascertain if this is electricity data or not. Electricity data values of 0 are set to NaN.

required

Attributes:

Name Type Description
df DataFrame

Immutable dataframe that contains the meter and temperature values for the baseline data period.

disqualification list[EEMeterWarning]

A list of serious issues with the data that can degrade the quality of the model. If you want to go ahead with building the model while ignoring them, set the ignore_disqualification = True flag in the model. By default disqualifications are not ignored.

warnings list[EEMeterWarning]

A list of ssues with the data, but none that will severely reduce the quality of the model built.

is_electricity_data = is_electricity_data instance-attribute 🔗

tz = None instance-attribute 🔗

warnings = [] instance-attribute 🔗

disqualification = [] instance-attribute 🔗

settings = self._settings_class() instance-attribute 🔗

df: pd.DataFrame | None property 🔗

Get the corrected input data stored in the class. The actual dataframe is immutable, this returns a copy.

billing_df: pd.DataFrame | None property 🔗

Get the corrected input data stored in the class. The actual dataframe is immutable, this returns a copy.

from_series(meter_data, temperature_data, is_electricity_data, tzinfo=None, settings=None) classmethod 🔗

Create a BillingReportingData instance from meter data and temperature data.

Parameters:

Name Type Description Default
meter_data Series | DataFrame | None

The meter data to be used for the BillingReportingData instance.

required
temperature_data Series | DataFrame

The temperature data to be used for the BillingReportingData instance.

required
is_electricity_data bool

Flag indicating whether the meter data represents electricity data.

required
tzinfo tzinfo | None

Timezone information to be used for the meter data.

None

Returns:

Type Description

An instance of the Data class.